U-Time:掌握这四步,90%的小白都能运营“超级用户”!
最新资讯 • 品牌活动U-Time
10146
2018-12-18
摘要:
在互联网下半场,你需要的不仅是用户增长,更需要价值持续增长!
2018U-Time冬季巡回中,友盟+于晓航结合U-App AI版能力,分享超级用户增长四步法:定义超级用户、获取超级用户、发展超级用户、保有超级用户,帮助App开发者将超级用户真正落地。 



以下为演讲精选:

第一步:定义超级用户

超级用户不等于VIP用户。VIP用户来自于传统行业,多以“金钱”来衡量用户价值。但在互联网下半场,用户除了贡献“金钱”,更大的作用是帮助产品扩展用户、激发用户需求

我们用四个维度来衡量超级用户:认可度(启动行为)、投入度(时长占比、花费占比)、稳定度(用户档案、持续活跃)和扩散度(主动分享)。这四个维度自成循环,只有认可才会投入,才会持续、主动传播以及更加认可。这里所考量的并不是绝对值,而是投入占比。

落在U-App AI版,我们从用户生命周期的视角,帮助App快速区分“流失用户、沉默用户、新手用户”,从而定位成长期的高价值用户,再从高价值用户中找到高活跃高贡献的人群,即超级用户:


落在U-App AI版,我们从用户生命周期的视角,帮助App快速区分“流失用户、沉默用户、新手用户”,从而定位成长期的高价值用户,再从高价值用户中找到高活跃高贡献的人群,即超级用户:


 1)通过Push产品的联动,找到流失用户、卸载App用户;

2)通过用户洞察的方式找到沉默用户;

3)从用户投入维度,定位新手用户;

4)最终定位高潜用户,持续培养和发展超级用户。

以上功能都可以通过U-App AI版提供AI智能拉新方案实现,在行业中找到潜在的超级用户;通过合作媒体把潜在超级用户在各个媒体中的分布找到,有针对性制定投放策略;再通过AppTrack移动广告监测,将人群数据、媒体数据、投放数据汇总在AI模型中,进一步优化圈选模型,解决投放策略严重依赖与经验和成本的问题,这一系列过程是我们和媒体联动,共同优化。



落在U-App AI版,我们从用户生命周期的视角,帮助App快速区分“流失用户、沉默用户、新手用户”,从而定位成长期的高价值用户,再从高价值用户中找到高活跃高贡献的人群,即超级用户:

1)通过Push产品的联动,找到流失用户、卸载App用户;

2)通过用户洞察的方式找到沉默用户;

3)从用户投入维度,定位新手用户;

4)最终定位高潜用户,持续培养和发展超级用户。

而把超级用户整体人数变多,无非是获取、发展、保有三种手段——把即将流失用户尽可能转化为超级用户、把所有新用户引导成超级用户,持续提升超级用户价值。

第二步:获取超级用户

获取超级用户有两个困境。一是获客成本越来越高,某些行业App获客成本高达300/人,这是很恐惧的数字;二是投放优化严重依赖经验,并且各媒体渠道投放操作复杂。

如何破解呢?在投放前,知道谁是潜在的超级用户,有针对性地投放。这就需要通过AI能力,圈选超级用户、以及在各渠道的分布。比如潜在超级用户是1万人,这1万人在媒体A8000人、媒体B2000人,我们通过针对性的投放更有效果,再结合后链路行为,去监测和优化。总结起来是四步:

1)找用户:找到潜在超级用户做投放;

2)定策略:按照目标人群的媒体渠道进行投放;

3)看转化:通过广告监测定位最终转化的超级用户;

4)优投放:通过用户点击情况智能优化投放方案。

 我们将这一系列过程,以具像化的产品形式实现。U-App AI版提供AI智能拉新方案,通过AI模型和全域用户画像,找到行业中的潜在超级用户;通过合作媒体把潜在超级用户在各个媒体中的分布找到,有针对性制定投放策略;再通过AppTrack移动广告监测,将人群数据、媒体数据、投放数据汇总在AI模型中,进一步优化圈选模型,解决投放策略严重依赖与经验和成本的问题,这一系列过程是我们和媒体联动,共同优化。

想要发展超级用户,就要找到用户中的潜力股。但行业间的巨大差异让潜力用户的寻找变的捉摸不定。

分享一个真实案例,某客户同时在经营两个App,一个是阅读类,是最开始做的;后来拓展到母婴App。在下图中,横轴表示时间,纵轴表示投入程度。对于阅读类App,竞争非常激烈,此消彼长;对于母婴类App,用户在每个App的投入时间都差不多,每个App都会有侧重有强项,因为受众的身份不同,妈妈们会同时使用好几个App。所以,两个行业对超级用户的描绘是完全不同的。

友盟+通过“时序模型”、“分段建模”、“基于循环神经网络的训练结构”,搭建了一套AI预测模型,帮您在不同行业中找到潜在超级用户。

第三步:发展超级用户

当找到超级用户,就要知其所好,投其所好,将其转化为超级用户。 

知其所好就是要了解这个人。

一是兴趣偏好。他是什么样的人,有哪些特征,更多是用户标签、画像;友盟+作为比较早的投入到大数据领域的公司,积累的数据丰富度是网络巨头们都难以企及的。我们将丰富的全域画像能力融入到U-App AI中去描绘超级用户兴趣偏好。

二是行为偏好。捕捉用户行为偏好的难点是,对于App来说,一是前端行为,一是后端行为,并且大部分是分属两套数据系统。在前端通过埋点看用户浏览行为,而后端数据会存储在自己的数据库中,很难通过上帝视角来查看用户行为数据和成交特征。

我们将前端行为和后端行为做打通,然后通过事件分析、漏斗分析、留存分析,去衡量用户的变化。识别用户之后,就要投其所好。把兴趣偏好跟行为偏好结合,针对性产品,来做运营方案。

我们还有行业Benchmark,把用户群体在行业里的指标展现出来。如果超级用户数据得到改善,但整体用户情况并没有在行业内有所突破,那很可能是超级用户定义的范围出了问题。同时,友盟+还支持将前后端打通的数据进行下载,从产品和内部运营的角度共同推动超级用户的增长。

第四步:防止超级用户流失


当我们获取超级用户、发展更多超级用户之后,就要考虑如何防止其流失。

根据一家美国市场调研机构的数据,2017年月人均下载App的数量是5.12017年年人均安装App30,可见App被卸载的概率非常高。

在防止流失上,我们提供三个能力:

1  高流失风险用户圈群。系统自动圈选出高流失风险用户,你可以直接存为分群做触达,也从侧面了解App的健康状况、用户粘性;

2  自主选择风险阈值。按照App的发展阶段、行业属性,去选择风险阈值;

3  完整风险分布展示。流失预警模型以分布的方式展示,做好预警防范工作。

挽回用户最直接的手段是PushPush推送有非常多策略,比如上面的两个Push,在推送时间、文案描述、受众选择上就有很多问题。Push如果对用户打扰特别多,用户就会选择把这个App通知关掉,甚至卸载。所以说挽回并不是打扰,更应该做的是知己知彼。

回顾一下,我们基于DI全域数据智能+AI去挖掘,实现监控、分析、拉新、管理、触达这五个数据能力,帮助开发者从四个纬度衡量哪些人会成为超级用户,从用户生命周期视角去定义超级用户;通过用户洞察的方式了解用户行为,通过全域用户标签去知其所好、投其所好;通过Push做沉默用户挽回,并且通过流失预警做好运营防范。另外结合用户管理,以生命周期的视角把所有流失、沉默的用户变成潜在的超级用户,并且把新手用户转化成超级用户。

现在U-App AI版的高级功能,智能拉新、用户增长(生命周期管理)已经开放申请,老用户可以在后台提交使用申请;新用户可以免费注册,下载SDK使用。友盟+也在持续丰富产品功能,增厚产品能力,也期待与垂直领域App头部App做共建。

关注我们
  • 友盟全域数据 前沿的行业数据新风向
  • 友盟数据服务 报告/干货/App/Web数据查询